Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 100(9): e02765, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162636

RESUMO

The current decrease in biodiversity affects all ecosystems, and the impacts of diversity on ecosystem functioning need to be resolved. So far, marine studies about diversity-ecosystem productivity-relationships have concentrated on small-scale, controlled experiments, with often limited relevance to natural ecosystems. Here, we provide a real-world study on the effects of microorganismal diversity (measured as the diversity of benthic diatom communities) on ecosystem productivity (using chlorophyll a concentration as a surrogate) in a heterogeneous marine coastal archipelago. We collected 78 sediment cores at 17 sites in the northern Baltic Sea and found exceptionally high diatom diversity (328 observed species). We used structural equation models and quantile regression to explore relationships between diatom diversity and productivity. Previous studies have found contradictory results in the relationship between microorganismal diversity and ecosystem productivity, but we showed a linear and positive basal relationship between diatom diversity and productivity, which indicates that diatom diversity most likely forms the lowest boundary for productivity. Thus, although productivity can be high even when diatom diversity is low, high diatom diversity supports high productivity. The trait composition was more effective than taxonomical composition in showing such a relationship, which could be due to niche complementarity. Our results also indicated that environmental heterogeneity leads to substantial patchiness in the diversity of benthic diatom communities, mainly induced by the variation in sediment organic matter content. Therefore, future changes in precipitation and river runoff and associated changes in the quality and quantity of organic matter in the sea, will also affect diatom communities and, hence, ecosystem productivity. Our study suggests that benthic microorganisms are vital for ecosystem productivity, and together with the substantial heterogeneity of coastal ecosystems, they should be considered when evaluating the potential productivity of coastal areas.


Assuntos
Diatomáceas , Ecossistema , Biodiversidade , Clorofila A , Rios
2.
Glob Chang Biol ; 23(6): 2179-2196, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132408

RESUMO

Benthic-pelagic coupling is manifested as the exchange of energy, mass, or nutrients between benthic and pelagic habitats. It plays a prominent role in aquatic ecosystems, and it is crucial to functions from nutrient cycling to energy transfer in food webs. Coastal and estuarine ecosystem structure and function are strongly affected by anthropogenic pressures; however, there are large gaps in our understanding of the responses of inorganic nutrient and organic matter fluxes between benthic habitats and the water column. We illustrate the varied nature of physical and biological benthic-pelagic coupling processes and their potential sensitivity to three anthropogenic pressures - climate change, nutrient loading, and fishing - using the Baltic Sea as a case study and summarize current knowledge on the exchange of inorganic nutrients and organic material between habitats. Traditionally measured benthic-pelagic coupling processes (e.g., nutrient exchange and sedimentation of organic material) are to some extent quantifiable, but the magnitude and variability of biological processes are rarely assessed, preventing quantitative comparisons. Changing oxygen conditions will continue to have widespread effects on the processes that govern inorganic and organic matter exchange among habitats while climate change and nutrient load reductions may have large effects on organic matter sedimentation. Many biological processes (predation, bioturbation) are expected to be sensitive to anthropogenic drivers, but the outcomes for ecosystem function are largely unknown. We emphasize how improved empirical and experimental understanding of benthic-pelagic coupling processes and their variability are necessary to inform models that can quantify the feedbacks among processes and ecosystem responses to a changing world.


Assuntos
Mudança Climática , Ecossistema , Peixes , Animais , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...